Part Number Hot Search : 
ARF463B 05111 2405SH3 AN1447 SD103 SR30A0CT BAV16W04 CY7C6
Product Description
Full Text Search
 

To Download IRFB4019PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com 1 3/2/06 IRFB4019PBF notes   through  are on page 2   
 features ? key parameters optimized for class-d audio amplifier applications ? low r dson for improved efficiency ? low q g and q sw for better thd and improved efficiency ? low q rr for better thd and lower emi ? 175c operating junction temperature for ruggedness ? can deliver up to 200w per channel into  8 ?  load in half-bridge configuration amplifier descriptionthis digital audio mosfet is specifically designed for class-d audio amplifier applications. this mosfet utilizes the latest processing techniques to achieve low on-resistance per silicon area. furthermore, gate charge, body-diode reverse recovery and internal gate resistance are optimized to improve key class-d audio amplifier performance factors such as efficiency, thd and emi. additional features of this mosfet are 175c operating junction temperature and repetitive avalanche capability. these features combine to make this mosfet a highly efficient, robust and reliable device for classd audio amplifier applications. s d g to-220ab d s d g gds gate drain source absolute maximum ratings parameter units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t c = 25c continuous drain current, v gs @ 10v a i d @ t c = 100c continuous drain current, v gs @ 10v i dm pulsed drain current  p d @t c = 25c power dissipation  w p d @t c = 100c power dissipation  linear derating factor w/c t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) mounting torque, 6-32 or m3 screw thermal resistance parameter typ. max. units r jc junction-to-case  CCC 1.88 r cs case-to-sink, flat, greased surface 0.50 CCC c/w r ja junction-to-ambient  CCC 62 max. 1251 20 150 1780 40 0.5 10lb  in (1.1n  m) -55 to + 175 300 v ds 150 v r ds(on) typ. @ 10v 80 m  q g typ. 13 nc q sw typ. 5.1 nc r g(int) typ. 2.4 ? t j max 175 c key parameters downloaded from: http:///

 2 www.irf.com s d g   repetitive rating; pulse width limited by max. junction temperature.   starting t j = 25c, l = 1.46mh, r g = 25 ? , i as = 10a.  pulse width 400s; duty cycle 2%.   r is measured at   
   limited by tjmax. see figs. 14, 15, 17a, 17b for repetitive avalanche information electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv dss drain-to-source breakdown voltage 150 CCC CCC v ? v dss / ? t j breakdown voltage temp. coefficient CCC 0.19 CCC v/c r ds(on) static drain-to-source on-resistance CCC 80 95 m ? v gs(th) gate threshold voltage 3.0 CCC 4.9 v ? v gs(th) / ? t j gate threshold voltage coefficient CCC -13 CCC mv/c i dss drain-to-source leakage current CCC CCC 20 a CCC CCC 250 i gss gate-to-source forward leakage CCC CCC 100 na gate-to-source reverse leakage CCC CCC -100 g fs forward transconductance 14 CCC CCC s q g total gate charge CCC 13 20 q gs1 pre-vth gate-to-source charge CCC 3.3 CCC q gs2 post-vth gate-to-source charge CCC 0.95 CCC nc q gd gate-to-drain charge CCC 4.1 CCC q godr gate charge overdrive CCC 4.7 CCC see fig. 6 and 19 q sw switch charge (q gs2 + q gd ) CCC 5.1 CCC r g(int) internal gate resistance CCC 2.4 CCC ? t d(on) turn-on delay time CCC 7.0 CCC t r rise time CCC 13 CCC t d(off) turn-off delay time CCC 12 CCC ns t f fall time CCC 7.8 CCC c iss input capacitance CCC 800 CCC c oss output capacitance CCC 74 CCC pf c rss reverse transfer capacitance CCC 19 CCC c oss effective output capacitance CCC 99 CCC l d internal drain inductance CCC 4.5 CCC between lead, nh 6mm (0.25in.) l s internal source inductance CCC 7.5 CCC from package avalanche characteristics parameter units e as single pulse avalanche energy mj i ar avalanche current  a e ar repetitive avalanche energy  mj diode characteristics parameter min. typ. max. units i s @ t c = 25c continuous source current CCC CCC 17 (body diode) a i sm pulsed source current CCC CCC 51 (body diode)  v sd diode forward voltage CCC CCC 1.3 v t rr reverse recovery time CCC 64 96 ns q rr reverse recovery charge CCC 160 240 nc CCC 73 see fig. 14, 15, 17a, 17b i d = 10a typ. max. ? = 1.0mhz, see fig.5 t j = 25c, i f = 10a di/dt = 100a/s  t j = 25c, i s = 10a, v gs = 0v  showing the integral reverse p-n junction diode. conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 10a  v ds = v gs , i d = 50a v ds = 150v, v gs = 0v v gs = 0v, v ds = 0v to 120v v ds = 150v, v gs = 0v, t j = 125c v gs = 20v v gs = -20v v gs = 10v i d = 10a v gs = 0v mosfet symbol r g = 2.4 ? v ds = 10v, i d = 10a conditions and center of die contact v dd = 75v, v gs = 10v  v ds = 75v v ds = 50v downloaded from: http:///

 www.irf.com 3 fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 6. typical gate charge vs.gate-to-source voltage fig 5. typical capacitance vs.drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 25c 5.0v vgs top 15v 12v 10v 8.0v 7.0v 6.0v 5.5v bottom 5.0v 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 175c 5.0v vgs top 15v 12v 10v 8.0v 7.0v 6.0v 5.5v bottom 5.0v 2 4 6 8 10 v gs , gate-to-source voltage (v) 0.1 1.0 10.0 100.0 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = 25v 60s pulse width t j = 25c t j = 175c -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 3.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 10a v gs = 10v 1 10 100 1000 v ds , drain-to-source voltage (v) 10 100 1000 10000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 5 10 15 20 q g total gate charge (nc) 0 4 8 12 16 20 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 120v vds= 75v vds= 30v i d = 10a downloaded from: http:///

 4 www.irf.com 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 7. typical source-drain diode forward voltage fig 8. maximum safe operating area fig 10. threshold voltage vs. temperature 0.0 0.5 1.0 1.5 v sd , source-to-drain voltage (v) 0.1 1 10 100 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 25 50 75 100 125 150 175 t j , junction temperature (c) 0 4 8 12 16 20 i d , d r a i n c u r r e n t ( a ) -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 2.0 3.0 4.0 5.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 50a ri (c/w) ? (sec) 0.535592 0.000222 0.913763 0.001027 0.432454 0.006058 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci= i / ri ci= i / ri 1 10 100 1000 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec dc downloaded from: http:///

 www.irf.com 5 fig 13. maximum avalanche energy vs. drain current fig 12. on-resistance vs. gate voltage fig 14. typical avalanche current vs.pulsewidth fig 15. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15:(for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long as neither tjmax nor iav (max) is exceeded 3. equation below based on circuit and waveforms shown in figures 17a, 17b. 4. p d (ave) = average power dissipation per single avalanche pulse.5. b v = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 4 6 8 10 12 14 16 v gs , gate-to-source voltage (v) 0.0 0.1 0.2 0.3 0.4 0.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( ? ) t j = 25c t j = 125c i d = 10a 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 250 300 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 1.3a 2.3a bottom 10a 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 20 40 60 80 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 10a 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. 0.01 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? tj = 150c and tstart =25c (single pulse) downloaded from: http:///

 6 www.irf.com fig 18a. switching time test circuit fig 18b. switching time waveforms v gs v ds 90% 10% t d(on) t d(off) t r t f v gs pulse width < 1s duty factor < 0.1% v dd v ds l d d.u.t + - fig 17b. unclamped inductive waveforms fig 17a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 19a. gate charge test circuit fig 19b gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 16. 
    
     for hexfet  power mosfets 
   ?  
    ?      ?           p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    
 
  + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"   
      
        
  d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - downloaded from: http:///

 www.irf.com 7 data and specifications subject to change without notice. this product has been designed and qualified for the consumer market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 03/06 to-220ab packages are not recommended for surface mount application. 

  
         

  
 lot code 1789 example: t his is an irf1010 note: "p" in assembly line position i ndi cates "l ead - f r ee" in the assembly line "c" as s embled on ww 19, 2000 international part number rectifier lot code as s e mb l y logo year 0 = 2000 dat e code we e k 19 line c downloaded from: http:///
note: for the most current drawings please refer to the ir website at: http://www.irf.com/package/ downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRFB4019PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X